DESCRIPTION
This illustration shows how an Atomic Force Microscope (AFM) is used to image a line of graphene made by a pencil. The scale spans ten orders of magnitude, from the microscope and pencil to the atoms that compose the scanning probe and pencil line. As the viewer zooms into the line, graphite flakes, and eventually a single layer of graphene, become visible. On the AFM, a silicon cantilever with a sharp atomic tip and a laser with a photodiode measure the up and down motion as the probe maps out the graphene sample.
DESCRIPTION
This illustration shows how an Atomic Force Microscope (AFM) is used to image a line of graphene made by a pencil. The scale spans ten orders of magnitude, from the microscope and pencil to the atoms that compose the scanning probe and pencil line. As the viewer zooms into the line, graphite flakes, and eventually a single layer of graphene, become visible. On the AFM, a silicon cantilever with a sharp atomic tip and a laser with a photodiode measure the up and down motion as the probe maps out the graphene sample.
OBJECTIVES
NANO CONTENT MAP
Nanometer-sized things are very small, and often behave differently than larger things do.
Scientists and engineers have formed the interdisciplinary field of nanotechnology by investigating properties and manipulating matter at the nanoscale.
DOWNLOAD FILES
Credits
Developed for the Center for Probing the Nanoscale, an NSF NSEC at Stanford University, supported under Grant No. PHY-0830228. Graphic design by Linda Nye.
Developed for the Center for Probing the Nanoscale, an NSF NSEC at Stanford University, supported under Grant No. PHY-0830228.
This linked product was created by another institution (not by the NISE Network). Contact owning institution regarding rights and permissions.