DESCRIPTION
This cart demo is about piezoelectricity - how some crystals produce electricity when you squeeze them. Visitors learn about the history of piezoelectricity, how it's used, and how it's applied in nanotechnology. They make electric sparks, handle models and listen to cheesy music.
DESCRIPTION
This cart demo is about piezoelectricity - how some crystals produce electricity when you squeeze them. Visitors learn about the history of piezoelectricity, how it's used, and how it's applied in nanotechnology. They make electric sparks, handle models and listen to cheesy music.
TRAINING VIDEOS
OBJECTIVES
BIG IDEA
Certain crystals have structures that change shape on the nanoscale.
LEARNING GOALS
The nanostructure of a material determines its properties. Small changes in structure can mean big changes in property.
Piezoelectricity is a property of crystals with a certain shape. Squeeze them and they generate electricity. Apply a current to them and they change shape.
Scientists use piezoelectricity to explore and transform the nanoscale world.
NANO CONTENT MAP
Nanometer-sized things are very small, and often behave differently than larger things do.
Scientists and engineers have formed the interdisciplinary field of nanotechnology by investigating properties and manipulating matter at the nanoscale.
Credits
Oregon Museum of Science and Industry
Developed for the NISE Network with funding from the National Science Foundation under Award Numbers 0532536 and 0940143. Any opinions, findings, and conclusions or recommendations expressed in this product are those of the authors and do not necessarily reflect the views of the Foundation.
Creative Commons Attribution Non-Commercial Share Alike 3.0 United States (CC BY-NC-SA 3.0 US).
View more details
NISE Network products are developed through an iterative collaborative process that includes scientific review, peer review, and visitor evaluation in accordance with an inclusive audiences approach. Products are designed to be easily edited and adapted for different audiences under a Creative Commons Attribution Non-Commercial Share Alike license. To learn more, visit our Development Process page.