nanowire

Scientific Image - Nanowire Photodetector

This scanning electron micrograph shows a gallium nitride nanowire photodetector device with a zinc oxide core grown by e-beam lithography.

The geometry and structure of nanowires make them both sensitive to light and efficient low-noise signaling devices, so they are ideally suited for applications involving light—such as detection, imaging, information storage, and intrachip optical communications. In addition, different types of nanowires can be combined to create devices sensitive to different wavelengths of light.

• SIZE: The nanowire has a diameter of about 200 nm.

Scientific Image - Silicon Nanowire Device

This scanning electron microscope image shows a silicon nanowire resting on two silicon nitride (SiNx) membranes.

Thermoelectric materials convert heat to electricity and vice versa. Most fossil-fuel-powered engines generate waste heat, so researchers are using nanotechnologies to explore ways of making thermoelectric devices more efficient in order to convert that waste heat to usable power—and thus save energy. This assembly was built to measure the thermal conductivity of a silicon nanowire synthesized specifically for thermoelectric applications.

Scientific Image - Silicon Nanowire

This transmission electron microscope image shows a single silicon nanowire.

Thermoelectric materials convert heat to electricity and vice versa. Most fossil-fuel-powered engines generate waste heat, so researchers are using nanotechnologies to explore ways of making thermoelectric devices more efficient in order to convert that waste heat to usable power—and thus save energy.

• SIZE: The diameter of this nanowire is approximately 100 nm.

• IMAGING TOOL: Transmission electron microscope

Scientific Image -Glass Nanowire

In this optical microscope image, light can be seen passing though a silica nanowire on a silica aerogel surface.

New technologies have made it possible to draw glass in long, ultra-smooth wires with uniform diameters in the nanometer range. Because of their extraordinary uniformity, these nanowires have unique properties important in optics and photonics, both of which require precise control of light.

• SIZE: This nanowire is 530 nm long and the radius of the bent wire is 8 µm.

• IMAGING TOOL: Optical Microscope

Scientific Image - Nickel Nanowires

The orientation of the nickel nanowires shown in this scanning electron microscope can be changed by altering the direction of an applied magnetic field.

Nanowires are a key focus of nanotechnology research due to their potential uses in nanoscale electronic, magnetic, optical, and mechanical devices. Nickel nanowires in particular may play an important role in increasing the memory capacity of computer hard disc drives.

• SIZE: The nanowires are 100-200 nm in diameter and about 20 µm in length.

• IMAGING TOOL: Scanning Electron Microscope (SEM)

Scientific Image - Glass Nanowire

This is a scanning electron microscope image of a silica nanowire on a silica aerogel surface. New technologies have made it possible to draw glass in long, ultra-smooth wires with uniform diameters in the nanometer range. Because of their extraordinary uniformity, these nanowires have unique properties important in optics and photonics, both of which require precise control of light.

• SIZE: The nanowire is 530 nm long and the radius of the bent wire is 8 µm.

• IMAGING TOOL: Scanning Electron Microscope

Subscribe to RSS - nanowire